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Abstract

With recent advances in large scale sequencing techndogies, we have seen an exporential growth in protein sequence information. Cur-
rently, our ability to produce sequence information far out-paces the rate at which we can produce structural and functiond information.
Conseguently, researchers increasingly rely on computationd techniques to extract useful i nformation from known structures contained in
large databases, thoughsuch approaches remain incomplete. As such, unraveing the relationship between pure sequence information and
threedimensiond structure remains one of the great fundamental problemsin moleaular biology.

In this report we aim to show several ways in which researchers try to characterize the structural, functiond and evolutionary nature of
proteins. Spedfically, we focus onthree @mnon prediction problems, seconday structure prediction, remote homology andfold prediction.
We describe a classof methods employing large margin classfiers with novd kernel functions for solving these problems, supdemented with
a thoroughewaluation study.

1 Introduction

The motivation behind the structural determination o proteins is based onthe belief that structural information will ultimately
result i n abetter understanding o intricate biologicd processes. Many methods exist to predict protein structure & diff erent lev-
els of granularity. Due to the interest from awide range of research communitiesin this subjed matter, abiennial competition,
The Criticad Assessment for Structure Prediction (CASP) ! asssses the performance of current structure prediction methodk.
In this report we am to show several ways in which reseachers try to charaderize the structural, functional and evolutionary
nature of proteins.

Within ead structural entity cdled a protein there lies a set of reaurring substructures, and within these substructures are
small er substructures dill. As an example, consider hemoglobin, the oxygen-carrying moleaule in human blood Hemoglobin
has four domains that come together to form its quaternary structure. Each damain asembles (i.e. folds) itself independently
to form atertiary structure. These tertiary structures are comprised of multiple secondary structure dements-in hemoglohin’s
case a helices. Alpha helices (and their counterpart 8 sheds) have degant repedaing petterns dependent upon sequences of
aminoadds. These sequences form the primary structure of aprotein, the small est structural division aside from atoms. Hence,
the linea ordering of amino adds forms soondary structure, arranging seandary structures yields tertiary structure, and the
arrangement of tertiary structures forms quaternary structure. (SeeFigure 1). Research in computational structure prediction
concerns itself mainly with predicting secondary and tertiary structure from known experimentally determined primary struc-
ture. Thisis due to the relative eae of determining primary structure and the complexity involved in quaternary structure.
In this chapter we provide an overview of current secondary structure prediction techniques, followed by a brekdown of the
tertiary structure prediction problem and descriptions of algorithms for ead of several more restricted problems.

1.1 Secondary Structure Prediction

A sequenceof charaders representing the secondary structure of aprotein describesthe general three-dimensional form of locd
regions. These regions organize themselves into patterns of repeaedly occurring structural fragments independently from the
rest of the protein. The most dominant locd conformations of polypeptide chains are dpha helices and beta sheds. Theselocd
structures have a cetain regularity in their form, attributed to the hydrogen bondinteradions between various residues. An
aphahelix has a il -li ke structure, whereas a beta shed consists of parall el strands of residues. (SeeFigure 1). In additionto
regular seoondary structure dements, irregular shapes form an important part of the structure and function o proteins. These
elements are typicdly termed coil regions.

Lhttp://predictioncenter.org/



Seoondary structure can be divided into several types, though sually at least three dasses (alpha-helix, coil sand beta-shee)
are used. No unique method d assgning residues to a particular seaondary structure state from atomic coordinates exists,
thoughthe most widely accepted protocol is based onthe DSSPalgorithm [25]. DSSPuses the foll owing structural classes:
H (a-helix), G (310-helix), | (7-helix), E (5-strand), B (isolated g-bridge), T (turn), S (bend), and — (other). Several other
seandary structure assgnment algorithms use areduction scheme that converts this eight-state assgnment down to threestates
by assgning H and G to the helix state (H), E and B to a the strand state (E), and therest (I, T, S, and 9 to a il state (C).
Thisisthe format generally used in structure databases. Within the secondary structure prediction problem, the task isto lean
amodel that assgns a secondary structure state to ead residue of aninput sequencein the ebsence of atomic coordinates.

1.2 Protein Tertiary Structure

Oneof the biggest goalsin structural bicinformaticsisthe prediction o thethreedimensional (3D) structure of aprotein fromits
one-dimensional (1D) protein sequence. Thegoal isto be &leto determine the shape (known asafold) that agiven aminoadd
sequencewill adopt. The problem is further divided based onwhether the sequencewill adopt a new fold or bea resemblance
to an existing fold (template) in some protein structure database. Fold recogntionis easy when the sequencein question has
a high degreeof sequence similarity to a sequencewith knawvn structure [7]. If the two sequences share evolutionary ancestry
they are said to be homologouws. For such sequence pairs we can buld the structure for the query protein by choasing the
structure of the known hamologows sguence & template. Thisis known as comparative modelli ng.

In the case where no goodtemplate structure existsfor the query, one must attempt to buil d the protein tertiary structure from
scratch. These methods are usually cdled abinitio methods. In athird fold prediction scenario, there may naot necessarily be a
goodsequencesimil arity with aknown structure, but a structural template may still exist for the given sequence To clarify this
case, if one were avare of the target structure then they could extrad the template using structure-structure dignments of the
target against the entire structural database. It isimportant to nae that the target and template need na be homologows. These
two cases define the fold prediction (homologous) and fold prediction (analogous) problems during the CA SP competiti on.

1.2.1 Comparative Modeling Comparative Modeling a homology modeling is used when there exists a dea relation
ship between the sequence of a query protein (unknown structure) to that of a sequence of a known structure. The most basic
approadh to structure prediction for such (query) proteinsisto perform a pairwise sequence di gnment against ead sequencein
protein sequence databases. This can be acomplished using sequence dignment algorithms such as Smith-Waterman [55] or
sequenceseach algorithms (e.g. BLAST [3]). With agoodsequence dignment in hand, the chall engein comparative modeling
becomes how to best build athree-dimensional protein structure for a query protein using the template structure.

The heat of the eowe processis the seledion o a suitable structural template based on sequence pair similarity. Thisis
followed by the dignment of query sequence to the template structure seleded to buld the badkbore of the query protein.
Finaly the entire modeled structure is refined by loop construction and side-chain modeling. Several comparative modeling
methods, more commonly known as modeler programs, have been developed over the past several yeas [6, 13] focussng on
various parts of the problem.

1.2.2 Fold Prediction (Homologous) While satisfactory methods exist to deted homologs (proteins that share similar
evolutionary ancestry) with highlevels of simil arity, acairately deteding hanologs at low levels of sequencesimil arity (remote
homology detedtion) remains a challenging problem. Some of the most popuar approaches for remote homology prediction
compare aprotein with a clledion o related proteins using methods such as PS-BLAST [2], protein family profiles [15],
hidden Markov models (HMM ) [30, 5], and SAM [26]. These schemes produce models that are generative, in the sense that
they build amodel for a set of related proteins and then chedk to seehow well this model explains a candidate protein.

In recent yeas, the performance of remote homology detedion has been further improved throughthe use of methods that
explicitly model the diff erences between the various protein famili es (classes) by bulding dscriminative models. In particular,
a number of different methods have been developed that use suppat veador machines (SVM) [56] to produce results that are
generaly superior to thase produced by either pairwise sequence mmparisons or approaches based on generative models—
provided there is aufficient training data. [19, 35, 33, 34, 17, 18, 52, 31].

1.2.3 Fold Prediction (Analogous) Occaionaly aquery sequencewill have anativefold similar to ancther known fold
in adatabase, but the two sequences will have no detedable simil arity. In many cases the two proteinswill | adk an evolutionary
relationship aswell. Asthe definition o thisproblem reliesontheinability of current methodsto deted sequential simil arity, the
set of proteins falling into this category remainsin flux. As new methods continue to improve a finding sequential simil arities
as aresult of increassing dcatabase size and better techniques, the number of proteinsin question deaeases. Techniques to find
structures for such query sequencesrevolve aoundmourting the query sequenceon a series of template structures, in aprocess
known as threading [21, 20, 8]. An oljedive energy function provides a score for eat aignment, and the highest-scoring
template is chasen. Obvioudly, if the corred template does nat exist in the series then the methodwill nat produce an acarrate
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prediction. Asaresult of this limitation, predicting the structure of proteinsin this category usually fallsto new fold prediction
techniques.

1.2.4 New Fold Tedniquesto predict novel protein structure have come alongway in recent yeas, thougha definitive
solution to the problem remains elusive. Research in this area ca be rougHy divided into fragment assembly [24, 28, 32] and
first-principle based approadhes, though acasionally the two are combined [9]. The former attempt to assgn a fragment with
known structureto asedion o the unknavn query sequence. Thelatter start with an urfolded conformation, usually surrounced
by solvent, and all ow simulated physicd forcesto fold the protein aswould namally happen in vivo. Usually, algorithms from
either classwill use reduced representations of query proteins during initial stages to reduce the overall complexity of the
problem.

2 Learning from Data

Supervised leaning is the task of creaing a function that maps a set of inpus to a particular set of outputs by examining
labell ed training data. Thisform of learning days a vital role in several bioinformatic gpplicaions including protein structure
prediction.

Several books [11, 56, 10] cover the foundations of supervised leaning in detail. The general framework of a supervised
leaning problem is as follows. Given an input domain X and ouput domain ), lean a function mapping eat element of
X to an element in damain ). In formal terms, given some training data (X1, Y1) ... (X,, Y,), we ned to lean a function
h: X — Y mappingead ojed X; € X to a dasdficaionlabel Y; € V.

It is asumed that there exists an underlying probability distribution D(X,Y) over X x Y. This distribution remains
unchanged for the training and test samples, but this distribution is unknowvn. The training and test samples are assumed to be
drawn independently, identicdly distributed from D(X,Y).

Classfiers can be cdegorized as parametric models and dstribution freemodels. Parametric models attempt to solve the
supervised leaning problem by expli citly modeling the joint distribution D(X,Y) or condtional distribution D (Y| X) for all
X. Bayesian and Hidden Markov Models are examples of parametric models. Distribution-free models make no attempt to
lean the distribution, but rather choose afunction in a seleded hypdhesis gacefor clasdfication puposes. Margin based
leanerslike suppat vedor machines are distribution-free dassfiers.

2.1 Kernel Methods

Given a set of paositive training examples ST and a set of negative training examples S—, a suppat vedor machine (SVM)
leans a dasdficaion function f(X) of the form

FX)= D NKEX) - Y AKX X)), (D)

X;eSt X;ES™

where )\j and )\, are norrnegative weights that are computed during training by maximizing a quadratic ojedive function,
and (., .) is cdled the kernel function, which is computed over all training-set and test-set instances. Given this function, a
new instance X is predicted to be paositive or negative depending onwhether f(X) is positive or negative. In addition, the
value of f(X) can be used to oktain a meaningful ranking o a set of instances, asit represents the strength by which they are
members of the positive or negative dass

Thekernel function, when computed over all pairs of traininginstances, produces asymmetric matrix. To ensure the vali dity
of akernel, it is necessary to ensure that it satisfies Merce’s conditions, which require the pairwise matrix generated by the
kernel functionto be positive semidefinite. Formally, any function can be used as akernel so longas for any number n, and any
possble set of distinct instances { X1, ..., X, }, then x n Gram matrix defined by K, ; = KC(X;, X;) is ymmetric positive
semidefinite.

A symmetric function defined onthe training set instances can be mnverted into a positive definite by adding to the diag-
onal of the training Gram matrix a sufficiently large nornnegative cnstant [52]. For example, the constant shift embedding
kernelizing approach propases the use of small est negative e@genvalue to be subtraded from the main diagoral [58].

3 Structure Prediction - Capturing the right signals

Thus far we have looked at several problems within the larger context of protein structure prediction. Anided solution to the
structure prediction problem would corredly predict, from only sequenceinformation, the complete native conformation o a
protein in three-dimensional space Dueto the difficulty of developing such agrand solution, decomposing the problem hasled
to goodsolutions to small er parts of the problem.

In the remainder of this chapter we focus on three @mmon prediction problems, secondary structure prediction, remote
homology and fold prediction. We dso describe a dass of methods employing large margin classfiers with nowel kernel



functions for solving these problems.

One of the fundamental stepsin building goodclasdfication modelsis sleding feaures that fit the dassfication task well .
Theinpu domain X for the protein structure prediction problems is the anino add residues and their properties.

A protein sequence X of length n is represented by a sequence of charaders X = (a1, as, - . ., a,) such that ead charader
corresponds to ore of the 20 standard amino adds. Quite often, the learning and prediction algorithms ssgment the sequence
into short contiguows segments cdled wmers. Spedficdly, given a sequence X of length n and a user-supgied parameter w,
the wmer at position of X (w < i < n — w) is defined to be the (2w + 1)-length subsequence of X centered at position i.
That is, the wmer contains a;, the w amino adds before, and the w amino adds after a;. We will dencte this subsequence &
wmerx (4).

It is widely believed that a sequence of amino adds encodes a structural signal [4], and this belief forms the underlying
premise of the protein structure prediction problem. Working under this assumption, reseachers have tried to encapsulate
protein sequence information in various forms for structure analysis. One cmmon way to incorporate more information
abou the structure of a sequenceis to consider similar (and hogfully, therefore, related) sequences. Using multi ple sequence
alignments one can infer structural information about conserved regions. Many clasdfiers take a inpu profiles constructed
from such alignments.

The profile of asequence X of length n can be represented by two n x 20 matrices. Thefirst isits paosition-spedfic scoring
matrix PS9M x that iscomputed direaly by PS-BLAST using the scheme described in[2]. The rows of this matrix correspond
to the various positions in X and the mlumns correspondto the 20 dstinct amino adds. The second matrix is its position-
spedfic frequency matrix PSAM x that contains the frequencies used by PS-BLAST to derive PSIM x . These frequencies (also
referred to as target frequencies [38]) contain bah the sequence-weighted observed frequencies (also referred to as effedive
frequencies [38]) aswell asthe BLOSUM®62[16] derived-pseudocounts[2].

We use the notations defined above to ill ustrate the machine leaning methods used for seandary structure prediction, remote
homology cetecionand fold recogntion.

4 Secondary Structure Prediction

A large number of secondary structure prediction a gorithms have been developed, and sincetheir inception predictionacaracy
has been continuowsly improved. Many algorithms can currently achieve asustained three state predictionacaracy intherange
of 77%—78%, and combinations of them can sometimes further improve the acaracy by ore to two percentage points. These
improvements have been well-documented [51], and are atributed to an ever-expanding set of experimentally determined
tertiary structures, the use of evolutionary information, and to algorithmic advances.

The secondary structure prediction approaches in use today can be broadly categorized into threegroups: neighba-based,
model-based, and meta-predictor-based. The neighba-based approaches [53, 14, 23] predict the secondary structure by identi-
fyingaset of simil ar sequence-fragmentswith knavn secondary structure; the model-based approaches [49, 22, 44, 42], employ
sophigticaed machine learning techniques to lean a predictive model trained on sequences of known structure; whereas the
meta-predictor-based approaches [12, 41] predict based ona combination o the results of various different neighba and/or
model-based techniques. The nea red-time evaluation d many of these methods performed by the EVA server [48] shows
that the model-based approaches tend to produce statisticaly better results than the neighba-based schemes, which are further
improved by some of the more recently developed meta-predictor-based approaches [41]].

Historicdly, the most successul model-based approaches auch as PHD [49], PSPRED [22], and SSRo [42], were based on
neural network (NN) leaning techniques. However, in recent yeas, a number of reseachers have dso developed secondary
structure prediction algorithms based onsuppat vedor madines.

In the remainder of this ssaion we present one such SVM-based seaondary structure prediction algorithm cdled YASSPP
that shows exemplary performance[29].

4.1 YASSPP Overview

The overall structure of YASSPRs amilar to that used by many existing secondary structure prediction algorithms like PHD
and PSPRED. The gpproach isill ustrated in Figure 2 It consists of two models, referred to as 1., and Lo, that are mnreded
together in a cacaded fashion. The L; model assgns to eat position a weight for ead of the three secondary structure
elements {C, E, H}, which are provided as inpu to the L, model to predict the adual semndary structure dass of eah
pasition. The L; model treas ead pasition o the sequence a an independent prediction problem, and the purpose of the Lo
model isto determine the structure of a position bytaking into acourt the predicted structure of adjacent positions. YASSPP
splitsthe training set equally between the L; and Ly models. . ) . ) . )
Boththe L; and L, models consist of threebinary SVM classjfiers({Mlc/C, MIE/E, MIH/H} and{MQC/C, Mf/E, MQH/H},
respedively) trained to predict whether or not aposition belongsto aparticular secondary structure state or not (i.e., one-vs-rest
models). The output values of the I.; model are the raw functional outputs of these binary classfiers (i.e., Mlc/c, MIE/E, and
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Figure 2: The general architedure of YA SSPPsleaning framework

MlH /H ), whereas the predicted secondary state of the L, model corresponds to the state whose correspondng binary classfier
achieves the maximum value. That is, )
Predicted state = argmax (Mj3’%). @)
ze{C,E,H}

During training, for ead pasition i that belongs to ore of the three seandary structure states (i.e., classes) of a sequence
X, theinpu to the SVM is a (2w + 1)-length subsequence wmer of X. The proper value for the parameter w is determined
experimentally. During secondary structure prediction, a similar approad is used to construct awmer aroundead pasition 4
of aquery sequence X with unknavn secondary structure.

4.2 Input Sequence Coding

For the input sequence ading there ae two diff erent approaches for the L; model and two diff erent approaches for the L,
model. L,’s first coding scheme represents ead wmer z asa (2w + 1) x 20 matrix P,, whose rows are obtained diredly
from the rows of the PS9M for ead pasition. The second coding scheme augments this PS3M-based representation by adding
ancther (2w + 1) x 20 matrix B,,, whose rows are the rows of the BLOSUM 62 matrix correspondngto ead paosition’s amino
add. These schemes arereferred asthe P and the P B coding schemes, respedively.

By augmenting the wmer coding scheme to contain bah PSIM- as well as BLOSUM62-based information, the SVYM can
lean amodel that is also partialy based onthe nonposition spedfic information. This information will remain valid even in
casesin which PS-BLAST could na or fail ed to generate corred alignments.

The two coding schemes for the L, model are derived from the correspondng coding schemes of L; by including the
predictions computed by L;’s threebinary classfiers. Thisis dore by adding anather (2w + 1) x 3 matrix S,,whose columns
store the raw functional predictions of the MIC/C, MIE/E, and MIH/H models, respedively. Thus, the first coding scheme
consists of matrices P, and S,,, and the second coding scheme consists of matricesP,, B, and S,. These coding schemes are
novel compared to the existing methodk.

4.3 Profile-Based Kernel Functions

YA SSPPshows a methoddogy for designing and evaluation various kernel functions for use by binary SVM clasdfiers of the

L, and Ly, models. It develops kernel functions that are derived by combining a normali zed second-order kernel, in which the

contribution o ead pasition deaeases based on hav far away it isfrom the central residue, alongwith an exporential function.
The general structure of the kernel functions used in YASSPHs given by
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and KC5°(z, y) isakernel function that depends onthe choice of the particular input coding scheme cs, and for ead ore of the
P, PB, PS,and PBS coding schemes is defined as foll ows:
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The various terms invalving the rows of the P, B, and S matrices (e.g., P.(j,:) Py (j,:)) correspondto the dot-products of the
rows correspondngto the jth pasiti ons of the wmers (indexed from —w to +w). We do nd delveinto the various charaderistics
that are aoded in the constructions of the kernel functions but dired the reader to the report [29] for further detail s.

4.4 Performance Evaluation

For assesdng the performance of YASSPPa wide variety of datasets were used. A thorough mrameter study was dore to
study the impad of the various coding schemes, kernel chaoices and the best parameters. We show some of the comparative
performance study results for YASSPP

The prediction acarracy is asess®d using four widely used performance measures. These ae the threestate per-residue
acaracy (Q3), the segment overlap measure (SOV), the per-state Matthews correlation coefficients (C¢, Cg, Cg), and the
information index (Info). @3 is a measure of the overall threestate prediction acarracy and is defined as the percentage of
residues whase structural classis predicted corredly [49]. The SOV is a segment-level measure of the overall prediction
acaracy. Thismeasureisinitially introduced in [50] and subsequently refined in [54]. Matthews correlation coefficients [37]
provide aper-state measure of prediction performance and for a particular state: € {C, E, H} it isgiven by

Pini — Ui0;

Ci == 9
Vot i+ w)(pi + 01) (i + ug)(ni + 07)

©)

where p; isthe number of corredly predicted residuesin state 4, n; isthe number of residues that were corredly rejeced (true
negatives), u; is the number of residues that were incorredly rejeded (false negatives), and o; is the number of residues that
wereincorredly predicted to bein state s (false positives). Finally, theinformationindex [49] is an entropy-rel ated measure that
merges the observed andthe predicted state-spedfic acarracy measuresinto asingle number with all t hese d ements contributing
equally.

Table 1 compares the performance adieved by YASSPPagainst that achieved by PHDps [44], PIPRED [22], SAM-
T99%sec [27], PROFsec [47], SCRATCH [42], SSRo4 [42], and SABLE2 [43]. These schemes represent some of the best
performing schemes currently evaluated by the EVA server, and their results were obtained diredly from EVA. Since EVA did
not use dl the methods to predict all the sequences of EVA ¢4, Table 1 presents four diff erent sets of resultsfor YASSPR, ps
and YASSPR:5 prs (indicaed by the superscripts 1-4), ead ohtained by averaging the various performance asessment
methods over the common subset. These common subsets contained 165 134, 86, and 115sequences, respedively.

These results how that bath YASSPR . ps and YASSPR 5. pps adhieve better prediction performancethan that achieved
by any of the other schemes acossall the different performance assssmnent measures. In particular, for the entire dataset,
YASSPRp.pps adhieves a Q3 score of 79.34%, which is 1.7 percentage points higher than the second test-performing
scheme in terms of @3 (SAM-T99se(), and an SOV score of 78.65%, which is 2.6 percentage points higher than the second



Table 1: Performance onthe EVA c4 dataset.

Scheme Q3 SOV Info Cc Ck Cy
PHDpsi 7452 7069 0346 0529 0685 0665
PYPRED 7762 7605 0375 0561 Q735 0696
SAM-T99%sec 7764 7505 0385 Q578 Q721 Q675
PROFsec 7654 7539 0378 0562 Q714 Q677
'YASSPR, ps 7835 7720 0407 Q589 Q746 Q708
ErrSig 086 121 0015 Q015 Q021 Q017
'YASSPRp.pps 7934 7865 0419 Q608 Q747 Q722
ErrSig 082 116 0015 Q015 Q021 Q016
SCRATCH 7575 7138 0357 0545 Q0690 0659
2YASSPR, ps 7839 7769 0406 0586 Q750 Q711
ErrSig 097 136 0016 Q017 Q023 Q018
2YASSPRp.pps 7931 7875 0416 0602 Q751 Q722
ErrSig 094 129 0016 Q017 Q023 Q018
SSko4 7796 7273 0385 0559 Q711 Q696
3YASSPR, ps 7921 7860 0418 0590 Q749 Q723
ErrSig 119 167 0021 Q023 Q030 Q022
3YASSPRB.pps 8003 7900 0430 0605 Q751 Q736
ErrSig 118 168 0022 Q024 Q030 Q022
SABLE2 7685 7355 0376 0546 Q725 (0682
1YASSPR, ps 7870 7809 0417 Q0596 Q766 Q715
ErrSig 100 142 0018 Q018 Q025 Q019
1YASSPRp.pps 7985 7971 0432 0615 Q768 Q730
ErrSig 097 139 0018 Q019 Q025 Q019

YASSPR, ps usesthe P+ PS inpu codingandthe YASSPR: 5. pBs
usesthe PB + PB.S inpu coding and were obtained usingw = 7 (i.e.,
wmers of size 15). The 'YASSPPare the averages over the set of se-
quencesin commonwith PHDpsi, PSPRED, SAM-T99se¢ and PROF-
sec. The 2YASSPPare the aserages over the set of sequences in com-
monwith SCRATCH. The 3YA SSPPare the averages over the set of se-
guences in common with SSRo4. The 4 YA SSPPare the averages over
the set of sequencesin commonwith SABLE2.



Table 2: Comparative performance of YASSPPagainst other
semndary structure prediction servers.

RS126 Dataset

Scheme Q3 SOV Info Co Cg Cg
PIPRED 81.01 7624 045 065 070 Q77
PHD 7692 7257 038 057 063 073
Prof 7695 7170 038 058 063 073
SSRo 7701 7024 038 058 061 072
YASSPR pg 7981 7441 042 061 070 Q76

ErrSig 080 128 002 002 002 002
YASSPRg.prs 8029 7565 043 061 070 075

ErrSig 079 125 002 002 002 002

CB513Dataset

Scheme Q3 SOV Info Cc Cg Cg
PIPRED 7995 7648 043 063 068 076
PHD 7761 7498 039 059 065 073
Prof 7713 7374 039 058 064 073
SSRo 7907 7439 042 061 065 Q076
YASSPR, pg 8052 7739 045 062 070 Q74

ErrSig 040 060 001 001 001 Q01
YASSPRg.pps 8099 7786 045 063 070 Q075

ErrSig 039 060 001 001 001 Q01

YASSPR, pgs uses the P + PS inpu coding and the
YASSPR g, pps Uses the PB + PBS inpu coding. Both
schemes use wmers of length 15 (w = 7). The results for
PYPRED, PHD, Prof, and SSRo were obtained from [46].

ErrSigisthe significant diff erencemargin for ead score (to dis-
tingush between two methods) and is defined as the standard
deviation dvided by the square roat of the number of proteins

(c/VN).

best performing schemein terms of SOV (PSPRED).

Table 2 comparesthe performance ahieved by YA SSPPs prodiction server with that achieved by ather model-based servers
such as PSPRED, PHD, Prof, and SSRo [46]. These results how that the performance adieved by YASSPR ps and
YASSPR . pps iSin general higher than that achieved by the other servers. YASSPR g pps’S performanceis one to four
percentage points higher in terms of Q3 and SOV. The only exceptionisthe RS126 dataset for which PSPRED acdhieves ome-
what better prediction performance than either YASSPR, ps or YASSPR g pps (PSPRED adieves a Q3 score of 81.01
vs 80.29 for YASSPR g, pps). However, as measured by Err Sg, this performance differenceis not statisticdly significant.
Also, aswas the cese with the previous results, YASSPR 5 pps achieves better prediction performancethan that achieved by
YASSPR, ps.

5 Remote Homology and Fold Prediction

Both remote homology detedtion and fold recognition are central problems in computational biology and hioinformatics, with
the am of classfying protein sequences into structural and functional groups or classes.

Pairwise sequence mmparison methods (e.g., sequence dignment algorithms like Smith-Waterman [55] and sequence
database seach todls like BLAST [1]) are ale to deted homologows squences with a high percentage sequence identity.
However, as the percent identity between sequence pairs deaeases, the problem of finding the corred homologous pairs be-
comes increasingly difficult.

Some of the better performing schemes in this domain use profile information to compare aquery protein with a colledion
of related proteins. Profiles for a sequence can be defined in terms of a multiple sequence dignment of a query sequence



with its gatisticdly significant homologs (as computed by PS-BLAST [2]) or in the form of hidden markov model (HMM)
states [30, 5]. The models built i n this fashion are examples of generative models.

The aurrent state-of-the-art methods employ discriminative based modelli ng techniques and have alarge advantage over
generative models in this domain. Suppat vedor machines have been the popuar choice of discriminative learners.

One of the ealy attempts at using a feaure-spacebased approach is the SV M-Fisher method[19], in which a profile HMM
model i s estimated ona set of proteins belongngto the pasitive dass ThisHMM isthen used to extrad avedor representation
for ead protein. Ancther approadch is the SVM-pairwise scheme [35], which represents ead sequence & a vedor of pairwise
simil ariti es between al sequencesin the training set. A relatively simpler feaure spacethat contains all possble short subse-
guences ranging from 3-8 amino adds (kmers) is explored in a series of papers (Spedrum kernel [33], Mismatch kernel [34],
and Profile kernel [31]). All threeof these methods represent a sequence X as avedor in this Smpler feaure space but differ
in the scheme they employ to actually determine if a particular dimensionu (i.e., kmer) hasanonzero weight in X’svedor or
not. The Spedrum kernel considersu to be present if X contains u asasubstring, the Mismatch kernel considersu to be present
if X contains a substring that differs with « in at most a predefined number of positions (i.e., mismatches), whereas the Pro-
file kernel considers u to be present if X contains a substring whose PS3—based ungapped alignment score with « is above
a user-suppied threshald. An entirely different feaure spaceis explored by the SVM-Isites [17] and SYM-HMM STR [18]
methods that take advantage of a set of locd structural motifs (SVM-Isites) and their relationships (SVM-HMM STR).

An alternative to measuring pairwise similarity througha dot-product of vedor representations is to cdculate an explicit
protein similarity measure. The recently developed LA-Kernel method [52] represents one such example of a dired kernel
function. This heme measures the similarity between a pair of protein sequences by taking into acourt al the optimal
gapped locd alignment scores between al posdble subsequences of the pair. The experiments presented in [52] show that
this kernel is superior to previously developed schemes that do nd take into acaount sequence profiles and that the overall
clasdgficaion performanceimproves by takinginto acourt all posshblelocd alignments.

5.1 Profile-Based Kernel Functions

Recently, aset of dired profile-based kernel functions were developed and tested to show very good gerformance[45]. Thefirst
class referred to as window-based, determines the similarity between a pair of sequences by combining ungpped alignment
scores of fixed-length subsequences. The seaond, referred to aslocd ali gnment-based, determines the simil arity between apair
of sequences using Smith-Waterman alignments and a pasition independent affine gap model, optimized for the charaderistics
of the scoring system. Both kernel clases utili ze profiles constructed automaticdly via PS-BLAST and employ a profile-to-
profile scoring scheme that extend arecently introduced profile dignment method[38].

One way of computing the profile-to-profile scores would be to take the dot product between the profile clumns for the two
positions, shown in Equation 10

20
Sx,v(i,§) = Y _ PSHMx (i, k) » PSMy (j, k), (10
k=1
Ancther example of such a scoring function [45] is given by Equation 11 This particular scoring function cgptures the
similarity between the two profile pasitions using bah the position spedfic scoring matrices and pasition spedfic frequency
matrices. This coring function can be defined as,

20
Sxy(i,j) = PSMx(i, k) PSHMy (j,k) +
k=1
20
> PSMMy (5, k) PSHMx (i, k),
k=1
1y

5.1.1 Smith-Waterman based Kernel Functions Asexplained in sedion 21, the choice of kernel function gays a
criticd role in the performance of a dasdfier. A simple Smith-Waterman based alignment scoring scheme can be used as a
kernel function provided steps are foll owed to ensure its vali dity—spedficdly, that it follows Mercer’s condtions.

The Smith-Waterman based kernel computes the simil arity between a pair of sequences X and Y by finding an optimal
alignment between them that optimizes a particular scoring function. Given two sequences X and Y of lengths n and m,
respedively, the SW-PS3M kernel computes their similarity as the score of the optimal locd alignment. In this alignment,
the simil arity between two sequence positions is determined using the profile-to-profile scoring scheme of Equation 11, anda
positi on independent affine gap model.

Within this locd alignment framework, the similarity score between a pair of sequences depends on the gap-opening (go)

10



and gap-extension (ge) costs, and the intrinsic charaderistics of the profile-to-profile scoring scheme. A scoring system whose
average score is positive will t end to produce very longalignments, potentiall y covering segments of low biologicdly relevant
similarity. On the other hand, if the scoring system canna easily produce dignments with pasitive scores, then it may fail to
identify any nonrempty similar subsequences. In order to obltain meaningful locd alignments, the scoring scheme that is used
shoud produce di gnments whose score must on average be negative with the maximum score being pasitive [55].

To ensure that the SW-PS3M kernel can corredly acourt for the charaderistics of the scoring system, the profile-to-profile
scores cdculated from Equation 11are modified by adding a constant value. This heme, commonly referred to as zero-
shifting [57], ensures that the resulting alignments have scores that are negative on the average, while dlowing for paositive
maximum Scores.

5.1.2 Window-based Kernel Functions Thelocd alignment based kernels capture the similarity between sequence
pairs by combining the ungapped alignment scores of wmer subsequences between the various paositions of the sequences.
Based onthe combination o fixed and varied length wmers for diff erent pair positions between sequences, [45] introduces
threenovel window-based kernel functions.

The ungapped alignment score between two wmers is computed using the profile-to-profile scoring method o Equation 11
asfollows:

wscorex,y(i,7) = Z Sx,y(i+k,j+k). 12
k=—w

The All Fixed-width wmers (AF-PS3M) kernel computes the simil arity between a pair of sequences X andY by adding-up
the dignment scores of all possble wmers between X andY that have apositive ungapped alignment score. Spedficdly, if the
ungapped aignment score between two wmers at positions ¢ and j of X and Y, respedively is denoted by wscorex v (i, 7),
n and m are the lengths of X andY’, respedively, and P,, is the set of al possble wmer-pairs of X and Y with a positive

ungapped alignment score, i.e,
Pw = {(wmerx (i), wmery (j)) | wscorex,y (3,5) > 0}, (13

forw+1<i<n—-—wandw+1<j<m — w,thenthe AF-PS3M kernel computes the simil arity between X andY as

AF-PSMx,v(w) = » _ wscorex,v (i, j)- (14)

(wmerx (i) ,WMeTy (31))EPw

The Best Fixed-width wmer (BF-PS3M) kernel improves onthe AF-PS3M kernel by seledingasubset P., of P, (asdefined
in Equation 13 such that (i) ead pasition d X and ead pasition o Y is present in at most one wmer-pair and (ii) the sum
of the wscores of the seleded pairsis maximized. Given P.,, the similarity between the pair of sequencesis then computed as
foll ows:

BF-PSMx,y (w) = Z wscorex,y (4,7). (15
(wmer(X,i),wmer(Y,j))€P.,

Therelation between P., and P,, can be better understoodif the possble wmer-pairsin P, areviewed asformingann x m
matrix, whose rows correspondto the positions of X, columns to the positions of Y, and values correspondto their respedive
wscores. Within this context, P, correspondsto amatching o the rows and columns[40] whose weight is high (bipartite graph
matching problem). Sincethe seledionforms amatching, ead pasition o X (or Y') contributes asingle wmer in Equation 15
and as auch, eliminates the multiplicity present in the AF-PS3M kernel. At the same time, the BF-PS3M kernel attempts to
seled the best wmers for ead pasition.

In fixed-width wmer-based kernels the width of the wmers is fixed for al pairs of sequences and throughou the entire
sequence. Asaresult, if w is st to arelatively high value, it may fail to identify pasitive scoring subsequences whose length
is analer than 2w + 1, whereas if it is st too low, it may fail to reward sequence-pairs that have relatively long similar
subsequences.

The Best Variable-width wmer (BV-PS3M) kernel overcomes this problem by using variable length wmers. It is derived
from the BF-PS3M kernel, where, for a given a user-supgdied width w, the BV-PS3M kernel considers the set of al possble
wmer-pairs whose length ranges from one to a maximum w, i.e.,

From this st P;...,, the BV-PSM kernel uses the greedy scheme employed by BF-PS3M to sdled a subset P; ,, of

11



wmer-pairs that form ahigh weight matching. The similarity between the pair of sequencesis then computed as foll ows:

BV-PSMx vy (w) = Z wscorex,y (4, 7). a7

(wmer(X,i),wmer(Y.,j))€P] .

Sincefor eath pasition o X (andY), P;_,, is constructed by including the highest scoring wmer for 4 that does not conflict
with the previous sledions, this scheme can automaticdly seled the highest scoring wmer whaose length can vary from one
up to w; thus, achieving the desired effed.

Table 3: Comparison against different schemes for the
superfamil y-level clasdficaion problem.

Kernel ROC ROC50 mRFP
SVM-Fisher 0.773 0250 Q204
SVM-Pairwise 0.896 0464 Q084
LA-eig(B =0.2) 0.923 0661 Q064
LA-eig(B = 0.5) 0.925 (0649 Q054
LA-ekm(3 = 0.5) 0.929 0600 Q052
SVM-HMM STR-Ave — 0640 Q038
SVM-HMM STR-Max — 0618 Q043
SVM-HMM STR-Hybrid — 0617 Q048
Mismatch 0.872 Q400 Q084
Profile(4,6) 0.974 Q756 Q013
Profile(5,7.5) 0.980 Q794 Q010
AF-PS3V(2) 0.978 0816 Q013
BF-PSIM(2) 0.980 0854 Q015
BV-PSIM(2) 0.973 0855 Q018
SW-PS3(3.0,0.7501.50) 0.982 0.904 0.015
AF-GSM(6) 0.926 0549 Q048
BF-GSM(6) 0.934 0669 Q053
BV-GSM(6) 0.930 0666 Q052

SW-GSM(B62,5.0,1,0.5) 0.948 Q711 Q039

The SVM-Fisher, SV M-Pairwise, LA-Kernel, and Mismatch re-
sults were obtained from [52]. The SYM-HMMSTR results
were obtained from [18]and correspondto the best-performing
scheme (the authors did na report ROC values). The Profile
results were obtained locdly by running the pubicly avail able
implementation o the scheme obtained from the authors. The
ROC50 value of the best performing scheme has been uncer-
lined.

5.2 Performance Evaluation

The fold prediction algorithms can be evaluated using the sets of sequences obtained from the SCOP database [39]. The
SCOP database isamanually curated protein structure database assgning proteinsinto hierarchicdly defined classes. The fold
prediction problem in the context of SCOP can be defined as assgning a protein sequenceto its corred fold. On asimilar basis
the remote homology problem can be defined as predicting the correa superfamily for a protein.

To evauate the ebove techniques, remote homology detedionis smulated by formulating it as a superfamily classficaion
problem within the context of the SCOP database. The same dataset and classficaion problems? have been used in a number
of ealier studies [35, 18, 52] alowing for dired comparisons of the relative performance of the various shemes. The data

2The dataset and classficaion pgroblem definiti ons are avail able & http://www.cs.col umbia.edu/compbio/svm-pairwise.
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Figure 3: Comparison o the different SVM-based methods for remote homology detedion onthe SCOP 1.53 benchmark
dataset. The graph pots the total number of famili es for which a given method exceals the ROC-50 score threshold alongthe
X-axis.

consists of 4352sequences from SCOP version 153 extraded from the Astral database, grouped into famili es and superfamili es.
The dataset is processed so that it does not contain any sequence pairs with an E-value threshold smaller than 10~25. For eath
family, the protein damainswithin the family are considered pasitive test examples, and protein domains within the superfamily
but outside the family are considered pasitive training examples. This yields 54 famili es with at least 10 pgsitive training
examples and 5 paitive test examples. Negative examples for the family are chosen from outside of the positive sequences’
fold, and are randamly split i nto training and test sets in the same ratio as the paositive examples.

Employing the same dataset and owrall methoddogy as in remote homology detedion, we simulate fold detedion by
formulating it as afold clasdficaion problem within the context of SCOP's hierarchicd classficaion scheme. In this stting,
protein damains within the same superfamily are considered pasitive test examples, and protein damains within the same fold
but outside the superfamily are cnsidered pasitive training examples. This yields 23 superfamili es with at least 10 pasitive
trainingand 5 paitive test examples. Negative examples for the superfamily are chasen from outside of the positive sequences
fold and split equally into test and training sets’. Since the pasitive test and training instances are members of different
superfamili es within the same fold, this new problem is dgnificantly harder than remote homology detedion, as the sequences
in the diff erent superfamili es do nd have any apparent sequence similarity [39]. The quality of these methods is evaluated by
using the recever operating charaderistic (ROC) scores, the ROC50 scores, and the median rate of false positives (MRFP).

Table 3 and Table 4 compare the performance of the various kernel functions devel oped in this paper against that achieved by
anumber of previously developed schemes for the superfamily- and fold-level classficaion problems, respedively. Inthe case
of the superfamily-level clasdficaion problem, the performance is compared against SVM-Fisher [19], SVM-Pairwise [35],
and dfferent instances of the LA-Kernel [52], SYM-HMM STR [18], Mismatch [34], and Profile [31].

The results in these tables show that bath the window- and locd alignment-based kernels derived from sequence profiles
(i.e., AF-PSM, BF-PSIM, BV-PS3M, and SW-PS3M) lea to results that are in general better than those obtained by existing
schemes. The performance alvantage of these dired kernelsis greaer over existing schemesthat rely on sequenceinformation

3The dasdficaion problem definitions are avail able & http://bioinfo.cs.umn.edwsupd ements/remote-homology/.
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Figure 4: Comparison d the diff erent SV M-based methods for fold detedion onthe SCOP 1.53 benchmark dataset. The graph
plots the total number of superfamili es for which a given method exceeds the ROC-50 score threshdd alongthe x-axis.

alore (e.g., SVM-Pairwise, LA-Kernels), but still remains dgnificant when compared against schemes that either diredly take
into acount profile information (e.g., SVYM-Fisher, Profile) or utili ze higher-level fedures derived by analyzing sequence-
structure information (e.g., SYM-HMM STR). Also, the relative advantage of profile-based methods over existing schemesiis
greder for the much harder fold-level classficaion problem over the superfamil y-level classficaion problem. For example, the
SW-PS3M scheme adieves ROC50 values that are 13.8% and 818% better than the best values achieved by existing schemes
for the superfamily- andfold-level clasdgficaion problems, respedively.

To get abetter understanding o the relative performance of the various shemes aaossthe diff erent classes, Figures3 and 4
plot the number of classeswhase ROC50 are greaer than a given threshold that ranges from O to 1. Spedficdly, Figure 3 shows
the results for the remote homology detedion problem, whereas Figure 4 shows the results for the fold detedion problem.
(Note that these figures contain only resultsfor the schemesthat we ae eleto runlocdly.) Theseresults show that our profile-
based methods lead to higher ROC50 values for a greaer number of classes than either the Profile or LA-kernels, espedally
for larger ROC50 values (e.g. in the range of 0.6 to 0.95). Also, the SW-PS3M tends to consistently outperform the rest of the
profile-based dired kernel methodks.

In addition, the results for the BF-GSM, BV-GSM, and SW-GSM kernels that rely onthe BLOSUM scoring matrices show
that these kernel functions are cgable of producing results that are superior to all of the existing nonprofile-based schemes. In
particular, the properly optimized SW-GSM scheme is able to achieve significant improvements over the best L A-Kernel-based
scheme (7.6% higher ROC50 value) and the best SV M-HMM STR-based scheme (15.1% higher ROC50 value).

From the evaluation o dired profile-based kernels for fold clasgfication, three mgjor observations can be made. First, as
was the case with a number of studies onthe acwracy of protein sequence dignment [38, 57, 36], the proper use of sequence
profiles leads to dramatic improvements in the overall ability to deted remote homologs and identify proteins that share the
same structural fold. Second kernel functions that are constructed by dredly taking into acourt the simil arity between the
various protein sequences tend to ouperform schemes that are based ona feaure-spacerepresentation (where eat dimension
of the spaceis constructed as one of k-posshiliti es in a k-residue long subsequence or using structural motifs (Isites) in the
case of SVM-HMM STR). This is espedally evident by comparing the relative advantage of the windaw-based kernels over
the Profile kernel. Third, time-tested methods for comparing protein sequences based on ogimal locd alignments (as well as
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Table 4: Comparison against different schemes for the fold-
level clasdficaion problem.

Kernel ROC ROC50 mRFP
LA-eig(B8 = 0.2) 0.847 Q212 Q129
LA-eig(3 = 0.5) 0.771 Q172 Q193
Profile(4,6) 0.912 Q305 Q071
Profile(5,7.5) 0.924 Q314 Q069
AF-PSM(4) 0.911 Q374 Q067
BF-PSIM(4) 0.918 Q414 Q060
BV-PSM(4) 0.941 Q481 Q043
SW-PS3V(3.0,0.7502.0) 0.936 0.571 0.054
AF-GSM(6) 0.770 Q197 Q217
BF-GSM(6) 0.822 Q240 Q157
BV-GSM(7) 0.845 Q244 Q133

SW-GSM(B62,5,1.0,0.5) 0.826 Q0223 Q176

The results for the LA-Kernel were obtained using the pub
licly avail able kernel matrices that are avail able & the author’s
website. The Profile results were obtained locdly by runnng
the puHicly avail able implementation o the scheme obtained
from the aithors. The ROC50 value of the best performing
scheme has been uncerlined.

global and locd-global alignments), when properly optimized for the dassficaion problem at hand, lead to kernel functions
that are in general superior to those based on either short subsequences (e.g., Spedrum, Mismatch, Profile, or window-based
kernel functions) or locd structural motifs (e.g., SYM-HMM STR). The fad that these widely used methods produce good
resultsin the context of SVM-based classficaionisreasaring asto the validity of these goproaches and their ability to capture
biologicdly relevant information.

6 Concluding Remarks

Predicting protein structure from primary sequence information is a dhallenging problem that has attraded and continues to
attrad attention from several fields of researcch. The aurrent chall enges within this problem stem from two fadors. First, we
gtill do na have a @mplete understanding d the basic physicd principles that govern protein folding. Second the number
of experimentally resolved 3D protein structures remains snall compared to the number of known proteins. Despite these
obstades, recant advances in applying machine leaning to evolutionary analysis have significantly improved the quality of
current structural predictions.

In this chapter we provided a brief overview of some of these machine leaning techniques. Spedficdly, we examined
the design o state-of-the-art kernel functions within a discriminative leaning framework for secondary structure prediction,
remote homology detedion and fold recogrition. We have given a flavor of string kernels along with the use of evolutionary
information in our methods. Hopefully, increasingly better solutions to subproblems within complete structure prediction will
lead to an acairate methodfor native fold prediction from sequence
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